39 research outputs found

    Facilitating the transition to an inverter dominated power system : experimental evaluation of a non-intrusive add-on predictive controller

    Get PDF
    The transition to an inverter-dominated power system is expected with the large-scale integration of distributed energy resources (DER). To improve the dynamic response of DERs already installed within such a system, a non-intrusive add-on controller referred to as SPAACE (set point automatic adjustment with correction enabled), has been proposed in the literature. Extensive simulation-based analysis and supporting mathematical foundations have helped establish its theoretical prevalence. This paper establishes the practical real-world relevance of SPAACE via a rigorous performance evaluation utilizing a high fidelity hardware-in-the-loop systems test bed. A comprehensive methodological approach to the evaluation with several practical measures has been undertaken and the performance of SPAACE subject to representative scenarios assessed. With the evaluation undertaken, the fundamental hypothesis of SPAACE for real-world applications has been proven, i.e., improvements in dynamic performance can be achieved without access to the internal controller. Furthermore, based on the quantitative analysis, observations, and recommendations are reported. These provide guidance for future potential users of the approach in their efforts to accelerate the transition to an inverter-dominated power system

    Load frequency control in variable inertia systems

    Get PDF
    Conventional load frequency control primarily relies on large synchronous generation units to ensure regulation of the system frequency. However, its performance deteriorates as the system parameters, including inertia and droop coefficients, deviate from original system design. This letter proposes an augmented load frequency control (ALFC) to ensure robust frequency regulation under diurnal variations in system parameters that are expected in the future, renewables-rich power system. The superior performance of ALFC is demonstrated by several case studies, and its stability is assessed by small-signal analysis

    Initialization and synchronization of power hardware-in-the-loop simulations : a Great Britain network case study

    Get PDF
    The hardware under test (HUT) in a power hardware in the loop (PHIL) implementation can have a significant effect on overall system stability. In some cases, the system under investigation will actually be unstable unless the HUT is already connected and operating. Accordingly, initialization of the real-time simulation can be difficult, and may lead to abnormal parameters of frequency and voltage. Therefore, a method for initializing the simulation appropriately without the HUT is proposed in this contribution. Once the initialization is accomplished a synchronization process is also proposed. The synchronization process depends on the selected method for initialization and therefore both methods need to be compatible. In this contribution, a recommended practice for the initialization of PHIL simulations for synchronous power systems is presented. Experimental validation of the proposed method of establishing a PHIL simulation for a Great Britain network case study demonstrates the effectiveness of the approach in achieving stable operation

    Tuningless Load Frequency Control Through Active Engagement of Distributed Resources

    Get PDF
    The increasing share of volatile and inverter-based energy sources render electric power grids increasingly susceptible to disturbances. Established Load Frequency Controls (LFCs) schemes are rigid and require careful tuning, making them unsuitable for dynamically changing environments. In this paper, we present a fast and tuningless frequency control approach that tackles these shortcomings by means of modern grid monitoring and communications infrastructures in a two-fold concurrent process. First, direct observation of supply and demand enables fast power balancing decoupled from the total system dynamics. Second, primary resources are actively involved in frequency restoration by systematic adjustment of their frequency reference setpoints. In contrast to the commonly used Automatic Generation Control (AGC), the proposed Direct Load Frequency Control (DLFC) does not require an integrator for frequency control in the closed loop even under partial grid observability. The approach is Lyapunov-stable for a wide range of system parameters, including ramping limits of controlled resources. A performance study against AGC has been conducted on a three area power system in simulations as well as in a real laboratory grid with an installed generation capacity of 110kW

    Synchronous reference frame interface for geographically distributed real-time simulations

    Get PDF
    The increasing complexity of power systems has warranted the development of geographically distributed real-time simulations (GD-RTS). However, the wide scale adoption of GD-RTS remains a challenge owing to the (i) limitations of state-ofthe- A rt interfaces in reproducing faster dynamics and transients, (ii) lack of an approach to ensure a successful implementation within geographically separated research infrastructures (RIs) and (iii) lack of established evidence of its appropriateness for smart grid applications. To address the limitations in reproduction of faster dynamics and transients, this study presents a synchronous reference frame interface for GD-RTS. By means of a comprehensive performance characterisation, the superior performance of the proposed interface in terms of accuracy (reduced error on average by 60% and faster settling times) and computational complexity has been established. This study further derives the transfer function models for GD-RTS with interface characteristics for analytical stability analysis that ensure stable implementations avoiding the risks associated with multiple RI implementations. Finally, to establish confidence in the proposed interface and to investigate GD-RTS applicability for real-world applications, a GD-RTS implementation between two RIs at the University of Strathclyde is realised to demonstrate inertial support within transmission network model of the Great Britain power system

    Aggregated energy storage for power system frequency control : a finite-time consensus approach

    Get PDF
    In future power systems, widespread small-scale energy storage systems (ESSs) can be aggregated to provide ancillary services. In this context, this paper aims to integrate energy storage aggregators (ESAs) into the load frequency control (LFC) framework for power system frequency control. Firstly, a system disturbance observer is designed to supplement the secondary frequency control, where the ESA can respond to the estimated disturbance and accelerate the system frequency recovery. Then, within the ESA, a finite-time leader-follower consensus algorithm is proposed to control the small-scale ESSs via sparse communication network. This algorithm ensures that the ESAs can track the frequency control signals and the state-of-charge balancing among each ESS in finite-time. The external characteristics of the ESA will resemble to that of one large-scale ESS. Numerical examples demonstrate the convergence of the ESA under different communication graphs. The effectiveness of the entire framework for power system frequency control is validated under a variety of scenarios

    Assessment and development of stability enhancing methods for dynamically changing power hardware-in-the-loop simulations

    Get PDF
    In this paper, to extend the range of Power hardware-in-the-loop (PHIL) simulations into dynamically changing systems, i.e., setups where during the test scenario the ratio of impedance of the simulation and hardware under test changes, an adaptive Ideal Transformer Method (ITM) interface algorithm is proposed. The method incorporates voltage and current sources at both sides of the interface (simulation and hardware), a switch and an online stability assessment monitoring for the operation of the switch. Two different study cases have been developed for the assessment of the performance of the proposed adaptive ITM interface algorithm in a simulation environment. First, a simple test case with a variable resistive hardware under test has been carried out, followed by a case with a series resistive and inductive load. From the results obtained from the assessment of the proposed interface algorithm, a guideline for performing stability assessments of PHIL simulations in dynamically changing scenarios in a more accurate manner is also provided

    Inverter-based voltage control of distribution networks : a three-level coordinated method and power hardware-in-the-loop validation

    Get PDF
    The reactive power of the photovoltaic (PV) inverters has great potential for voltage regulation of distribution networks. In this paper, a new three-level coordinated control method for PV inverters is proposed to address network voltage fluctuation and violation issues. In Level I, a ramp-rate control is designed to smooth the network voltage fluctuations, while in Level II, a droop control is designed to alleviate the network voltage deviations. If the local compensation provided by Level I and II is not enough to regulate the network voltages within the required limits, the Level III control based on dynamic average consensus can respond and share the reactive power requirement among other inverters in a distributed way. The proposed control method can smooth the voltage profiles, restrain the voltage rise/drop problem, and coordinate all PV inverters in real-time when there is no feasible local solution. The stability analysis of the proposed three-level coordinated control for network voltage regulation is provided. The power hardware-in-the-loop (PHIL) experiment has been conducted for validating the proposed control method under various scenarios

    Transitioning from centralized to distributed control : using SGAM to support a collaborative development of web of cells architecture for real time control

    Get PDF
    This paper shares some early experiences of developing the Web of Cells (WoC) concept for real time implementation supported by the Smart Grid Architecture Model (SGAM) reference framework. One of the use cases identified for the WoC concept is elaborated upon and is mapped to SGAM, providing one of the first examples where the SGAM reference framework has been used to develop a future distributed control architecture for real time implementation in power systems. Furthermore, this paper offers some insight into the key contributions that this approach can bring, such as a more effective interdisciplinary collaboration, better understanding of the control problem, and its implementation and validation

    Decentralized-distributed hybrid voltage regulation of power distribution networks based on power inverters

    Get PDF
    In modern power distribution networks, voltage fluctuations and violations are becoming two major voltage quality issues due to high-level penetration of stochastic renewable energies (e.g., wind and solar power). In this paper, a hybrid control strategy based on power inverters for voltage regulation in distribution networks is proposed. Firstly, a decentralized voltage control is designed to regulate voltage ramp-rate for mitigating voltage fluctuations. As a beneficial by-product, the var capacity from the inverters become smoothed. Then, a distributed voltage control is developed to fairly utilize the var capacity of each inverter to regulate the network voltage deviations. Furthermore, once there is a shortage of var capacity from inverters, on-load tap changers control will supplement to provide additional voltage regulation support. The simulation results on IEEE 33-bus distribution network with real-world data have validated the effectiveness of the proposed voltage regulation method
    corecore